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Abstract
The full-potential linearized augmented plane-wave method within the local-
density approximation is used to investigate the effect of hydrostatic pressure
on the structure of zirconium metal. Three phases are considered: hexagonal
close-packed (hcp); body-centred cubic (bcc); and ω. For each of them the
Gibbs free energy G = E + pV is calculated as a function of hydrostatic
pressure. The three free energies as functions of pressure show three phase
transitions at 0 K: hcp to bcc at 23 kbar; ω to bcc at 50 kbar; and ω to hcp at
87 kbar. The ground state at 0 K is ω up to 50 kbar and bcc above 50 kbar.
Anomalies in the hcp structure and elastic constants at 0 K are found from 0 to
50 kbar.

1. Introduction

Zirconium metal has been the object of several experimental and theoretical studies, both at
ambient pressure (p = 0) and at higher hydrostatic pressures (p �= 0) [1–7]. The experiments
show that, at p = 0 and room temperature, Zr has hexagonal close-packed (hcp) structure [8],
but becomes body-centred cubic (bcc) at temperatures higher than 860 ◦C [9].

Under increasing pressure at room temperature, the hcp phase transforms into a hexagonal
structure called the ω phase which, in turn, at higher pressures transforms into the bcc
phase [6, 7]. The ω phase is not close-packed (space group number 191, P6/mmm), it has
three atoms per unit cell, and is found in a number of elements and alloys (Ti, Hf, CdI2, AlB2,
MgB2, Be2Hf, etc) [10]. In Zr the ω phase can be retained in a metastable state at ambient
conditions [9]. The transition from hcp to ω has been reported in the literature to occur at
various pressures in the range between about 20 and 60 kbar [11–14] at 20 ◦C and at 9.2 kbar
at −200 ◦C [9]. However, it is now believed to occur at 22 kbar [6] at room temperature.
The reverse transition, ω to hcp, was stated to happen at ambient pressure at 200 ◦C [9]. The
transition pressure between ω and bcc is reportedly 300–350 kbar [6, 7]. The lattice parameters
of hcp, bcc and ω Zr at p = 0 are summarized in table 1.
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Table 1. The lattice parameters of Zr structures. Abbreviations: hcp = hexagonal-close-packed;
bcc = body-centred cubic. The ω data refer to the quenched structure released from high-pressure;
lattice lengths are in ångström [8].

Structure Temp. (◦C) a c c/a

hcp 25 3.2312 5.1477 1.5931
bcc 862 3.6090
ω 5.0336 3.109 0.617

Theoretical studies of Zr under pressure have been performed with either the full-potential
linear muffin-tin orbital (FP-LMTO) method [1, 3, 5] or the full-potential linearized augmented
plane-wave (FP-LAPW) procedure [2, 4], mostly within the local-density approximation
(LDA) but sometimes also with the generalized-gradient approximation (GGA). Common
to all these studies is the calculation of energy versus volume [E(V )] curves; in some cases
the axial ratio c/a is kept constant. These curves are used to find the value of the volume
at which the curves of two structures cross, in order to determine a phase transition. The
transition volume is then converted to transition pressure by means of the equation of state,
which requires the evaluation of the derivative dE/dV . Two criticisms may be raised against
these procedures. One is that the assumption of constant c/a is an approximation which may
cause significant errors in the determination of the energy, and the subsequent derivative of
the energy, in calculating the pressure. The other is that, at finite pressures, phase transitions
are found from the crossings of G(p) curves, not E(V ) curves. Nevertheless, all studies find
the sequence of structures with increasing pressure to be hcp → ω → bcc, in agreement with
room-temperature experiments. Whenever both the LDA and the GGA were used, the LDA
transition pressures were found to be considerably lower than the GGAs, but the GGA values
agree better with the experimental results.

In the work presented here we attempted to avoid the two criticisms mentioned above by
allowing both the volume and the axial ratio to vary, and by minimizing the free energy at each
pressure rather than the energy at each volume. We used a first-principles total-energy method
and we opted for the LDA for the following reason. Our previous work on the epitaxial Bain
path of tetragonal Zr at p = 0 [15] found that the bcc phase is metastable when calculated with
the LDA but is unstable when calculated with the GGA. Since the bcc phase of Zr is known to
be stable at p = 0 and higher temperatures, as well as at finite pressures, the LDA appeared
to be a better choice. We thus calculated the free energies of the three phases (hcp, ω and bcc)
at equilibrium as functions of pressure, and determined the phase transition pressure from the
crossing points of G(p) curves. We found that the elastic constants of the hcp phase exhibit
marked anomalies at the transition pressures, but we did not obtain the structure sequence
found experimentally with increasing pressure at room temperature. We present details of the
calculations in section 2, the results in section 3, and the discussion in section 4.

2. Details of the calculations

We used the WIEN97 computer program, which is designed to apply the FP-LAPW method
to calculations of total energies for a variety of crystal structures and space groups [16]. As
mentioned in the introduction, we opted for the nonrelativistic LDA approximation to describe
exchange and correlation effects.

For each of the three structures considered (hcp, ω and bcc) we aimed at high precision
in the determination of the total energy by using: a large plane-wave cutoff of RKmax = 9; a
magnitude of the largest vector in the charge density Fourier expansion of Gmax = 14 bohr−1
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and a criterion of 1×10−6 Ryd for energy convergence. For both the hcp and the bcc structures
we chose 20 000 k-points in the full Brillouin zone (BZ), corresponding to 1026 and 1470
k-points, respectively, in the irreducible wedge of the BZ and resulting in 1350 and 475 plane
waves, respectively. For the ω structure the parameters were 3000 k-points in the full BZ,
190 k-points in the irreducible BZ, and 2000 plane waves. The muffin-tin radius of Zr was
kept at 2.0 bohr for all calculations.

The aim of the calculations, for all three structures considered, was to determine the
equilibrium structure as a function of pressure p, and in the process determine the free-energy
function G(p) at equilibrium at each pressure p, the lattice parameters a(p) and c(p), and the
volume/atom V (p). The procedures were described in detail in our study of magnesium under
pressure [17] and are only briefly summarized here. For a chosen value of the pressure p:

(1) select a value of a = a1;
(2) for several values of c calculate the total energy E ;
(3) find the value of c = c1 and E = E1 at which the slope of the energy function E(c) is

(∂ E/∂c)a = −(a2 sin γ /2)p, with γ = 60◦ for hcp and ω and γ = 90◦ for bcc (this value
is the one at which the stress in the c-direction equals −p);

(4) calculate the volume V1 = 1
2 a2

1c1 sin γ ;
(5) evaluate G1 = E1 + pV1;
(6) repeat the procedure from (1) through (5), for the same chosen value of p, but for a number

of different values of a such as to bracket the minimum of G;
(7) find this minimum by fitting a cubic polynomial (or a parabola) to the G(a) values, thereby

determining the values of the parameters a, c, c/a and V for the chosen pressure p.

The next step is to choose another value of the pressure and repeat the procedure from (1)
through (7), then choose another p etc. It should be clear that, in each step, we determine the
minimum of the free energy and, after several steps, we are in a position to plot G(p), a(p),
c(p) and V (p).

For the hcp structure we also determined the pressure dependence of the bulk modulus
B and of the ratio between linear compressibilities kc and ka along the c and a directions,
respectively, expecting to find anomalies in the vicinity of phase transitions. These quantities
are found from second derivatives of the G function, as described in [18]. A ‘constrained’
bulk modulus B(c/a) is found by keeping the axial ratio c/a constant:

B(c/a) = 2

9

(
c11 + c12 + 2c13 +

c33

2

)
. (1)

But, allowing for a change in c/a when the volume changes so as to minimize G, the full bulk
modulus is

B = c33(c11 + c12) − 2c2
13

c11 + c12 + 2c33 − 4c13
. (2)

The ratio kc/ka of linear compressibilities in the c and a directions is given by [19]

kc

ka
= c11 + c12 − 2c13

c33 − c13
. (3)

The elastic constants needed to evaluate these quantities are calculated from second strain-
derivatives of G at the minimum. The procedures for the calculation of elastic constants are
described in previous papers and summarized in [17].
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3. Results

Figure 1 depicts the free energy G as a function of pressure p for the three phases of Zr studied
here (hcp, bcc and ω). The top panel shows that the three G curves are very close and almost
parallel to one another, so that the relative magnitudes and intersections are difficult to see.
For this reason we have plotted portions of the G(p) plane in the lower panels with magnified
scales. We note that:

(1) at p = 0 the lowest-energy phase is the ω phase, the next higher is the hcp phase, and the
highest is the bcc phase;

(2) at approximately 20 kbar (second panel from the top) the free energies of the bcc and hcp
phases cross, as the bcc phase becomes lower in energy at higher pressures, but the energy
of the ω phase is still lower than the other two;

(3) at about 50 kbar (third panel from the top) the free energies of the bcc and the ω phases
cross, as the bcc phase becomes lower at higher pressures;

(4) at about 87 kbar (bottom panel) the ω phase crosses the hcp phase, although the bcc phase
is lower in free energy than both the hcp phase and the ω phase.

The pressure dependence of the lattice parameters is depicted in figure 2, where we see
that both the a and the c parameters of the hcp structure exhibit small anomalies in the range
between 0 and 50 kbar. The parameters of the bcc and ω phases do not show anomalies, except
for a slight change in slope of those of the ω phase at about 50 kbar. This behaviour is reflected
in the pressure dependence of the axial ratio c/a, depicted in figure 3.

Figure 4 shows the volume versus pressure curves. At p = 0 the bcc phase has the
smallest volume, followed by the ω and the hcp phases; the latter two are very close to each
other. Finally, in figure 5 we show for hcp Zr the pressure dependence of the ‘constrained’
bulk modulus B(c/a), of the unconstrained bulk modulus B and of the ratio kc/ka of the linear
compressibilities along c and a.

4. Discussion

An apparent contradiction with experiment is the result that, at zero pressure, we find the
lowest-energy phase to be not the hcp but the ω phase. This contradiction is only apparent
because our calculations are valid at 0 K, whereas the experimental result applies to room
temperature. The disagreement between theory and experiment may therefore by attributed to
thermal effects. We note that the phase diagram of Zr calculated by Ostanin and Trubitsin [5]
using the thermodynamic Gibbs function G = E − T S + pV indeed has the ω phase as the
ground state at zero pressure and zero temperature. We also note that a similar contradiction
with experiment (Eω < Ehcp) was found for Ti in [1–3], while in [3] the energy of the hcp
structure of Zr was found to be only 0.25 mRyd/atom lower than that of the ω phase.

Since Gω < Ghcp < Gbcc at 0 K in the pressure range below 50 kbar, we cannot discuss the
hcp → ω transition found experimentally at about 20 kbar, where we instead find a transition
between the hcp and bcc phases. However, a real contradiction with experiment is found
for the transition ω → bcc, which we find to occur at about 50 kbar compared to the 300–
350 kbar established by Ruoff and co-workers through diamond-anvil experiments [6, 7]. This
discrepancy may be due partly to the calculations being valid only at 0 K and partly to the use
of the LDA approximation. Thus, reference [3] finds the pressure for the ω → bcc transition
to be 112 kbar with LDA and 354 kbar with GGA, while [4] finds 178 kbar with LDA and
291 kbar with GGA, albeit in both cases by minimizing the energy, not the free energy.
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Figure 1. The pressure dependence of the free energy G for the hcp, bcc and ω phases of Zr. Top
panel: the full range of pressures investigated in this work. Second panel: the pressure range 0
to 30 kbar, showing the crossing of the hcp and bcc free energies at about 20 kbar, while the ω

free energy is lower than both. Third panel: the crossing of the bcc and ω free energies at about
50 kbar. Bottom panel: the hcp and ω free energies cross at about 87 kbar, while the bcc phase is
lower than both.
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Figure 2. The pressure dependence of the lattice parameters a and c for the three Zr structures
hcp, bcc and ω.

Figure 3. The changes in the axial ratio c/a of hcp, ω and bcc Zr with increasing hydrostatic
pressure.

Figure 3 proves that the axial ratio c/a, which was assumed to be constant with varying
volume in several published reports, does in fact exhibit a noticeable pressure dependence,
While for the bcc structure the value of c/a remains practically unity up to 200 kbar, for the
hcp structure it changes by about 6% between 0 and 50 kbar and for the ω structure it changes
by about 3% in the same pressure range. These changes may have a significant effect on the
energy curve as a function of volume and also on its derivative.
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Figure 4. A plot of the equation of state for hcp, bcc and ω Zr.

Figure 5. The bulk modulus B and the ratio of linear compressibilities kc/ka along the c- and
the a-axes of hcp Zr exhibit marked anomalies in the pressure range 0–50 kbar, in contrast to the
‘constrained’ modulus B(c/a) (defined in the text).

The small anomalies shown by the lattice parameters and the axial ratio of hcp Zr in the
range 0–50 kbar are magnified considerably by the elastic quantities that we plot in figure 5. An
unexpected result is that the ratio of linear compressibilities kc/ka is negative in the pressure
range from 0 to about 50 kbar. Both the bulk modulus B and kc/ka exhibit remarkable
sensitivity to the phase changes occurring at 20 and 50 kbar. It is interesting to note that,
by contrast, the bcc structure is wholly insensitive to either transition while the ω structure
exhibits a change in slope at about 50 kbar. The ‘constrained’ bulk modulus B(c/a) of the hcp
phase turns out to be largely insensitive to the transitions, showing directly that the c/a ratio
can have a significant effect on the behaviour of material quantities in the vicinity of phase
transitions.
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